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Abstract

In an object-oriented databases, a class consists of a set of attributes, and the values of the
attributes are objects that belong to other classes; that is, the definition of a class forms a
class-aggregation hierarchy of classes. A branch of such a hierarchy is called a path. There
have been several index organizations proposed to support object-oriented query languages,
including multiindex, join index, nested index and path index. In all the proposed index
organizations, they are helpful only to a query which retrieves the objects of the root class
of a given path by a predicate which specifies the value of the attribute at the end of the
path. In this paper, we propose a new index organization for evaluating queries, called
full index, where an index is allocated for each class and its attribute (or nested attribute)
along the path. From the analysis results, we show that a full index can support any
type of queries along a given path with a lower retrieval cost than all the other index
organizations. Moreover, to reduce the high update cost for a long given path, we will split
the path into several subpaths and to allocate a separate index on each subpath. Given a
path, the number of subpaths and the index organization of each subpath define an index
configuration. Since a low retrieval cost and a low update cost are always a trade-off in
all index organizations, we also propose cost formulas to determine the index configuration
which can provide the best performance for various applications by taking into account
various types of queries along a given path and a set of queries with more than one nested
predicates along a given path.
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1 Introduction

The new generation of computer-based applications, such as computer-aided designed and
manufacturing (CAD/CAM), multimedia databases (MMDB), and software development
environments (SDEs), requires more powerful techniques to generate and manipulate large
amounts of data. The traditional well-known record-based relational data model does
not provide the possibility of directly modeling complex data. Moreover, many complex
relationships among data, for example, instantiation, aggregation and generalization, can
not be well defined in the relational data model. Furthermore, the relational data model
does not provide mechanisms to associate data behavior with data definitions at schema
level.

Object-oriented database management systems [1, 10, 12, 13, 19, 20, 22, 23, 24] rep-
resent one of the most promising directions in the database area towards meeting require-
ments posed by advanced applications. An object-oriented data model not only provides
great expressive power to describe data and to define complex relationships among data,
it but also provides mechanisms for behavioral abstraction. In an object-oriented data
model [4, 6, 9], any real-world entity is represented by only one data modeling concept,
the object. Fach object is identified by a unique identifier (UID). The state of each object
is defined at any point in time by the value of its attributes. The attributes can have an
value both primitive objects (for example, strings, integers, or booleans) and non-primitive
objects, which in turn, consist of a set of attributes. Objects with similar attributes are
grouped into classes. A class C' consists of a number of attributes, and the value of an
attribute A of an object belonging to the class C' is an object or a set of objects belonging
to some other class C’. The class (' is called the domain of the attribute A of the class
(' and this association is called an aggregation relationship between class C' and C’. The
class C' in turn consists of a number of attributes, and their domains are other classes.
In general speaking, a class is a hierarchy of classes of aggregation relationships, called
aggregation hierarchy. A branch of such a hierarchy is called a path. An example of a
class-aggregation hierarchy is shown in Figure 1. An example of a path against this class-
aggregation hierarchy is Student.study.taught-by.work-in.name. There have been several
index organizations [3, 5, 8, 17, 14, 16, 18, 21, 25] proposed to support object-oriented
query languages, including multiindex [18], join index [21], nested index [3], path index
[3] and access support relation [14].

Consider the following query: Retrieve all the students who study some courses in

the Department of Computer Science, for the class-aggregation hierarchy as shown in Fig-



Figure 1: An example of a class-aggregation hierarchy.

ure 1 and the related instances shown in Figure 2, where ‘study in the Department of Com-
puter Science’ is a nested predicate. (Note that nested predicates are often expressed using
path-expressions; the above nested predicate can be expressed as Student.study.taught-
by.work-in.name = ‘Computer Science’.) Given a path = Student.study.taught-by.work-
in.name, there are four indices in a multiendex set. The first index is on the sub-
path Student.study and contains the following pairs: (Course[i], {Student[o]}), (Courselj],
{Student[p]}) and (Course[k], {Student[q]}). The second index is on the subpath Course.taught-
by and contains the following pairs: (Teacher[i], {Course[k], Course[l]}) and (Teacher]j],
{Courseli], Course[j]}). The third index is on the subpath Teacher.work-in and contains
the following pairs: (Department[l], {Teacher[i]}) and (Department[m], { Teacher[j]}). The
forth index is on the subpath Department.name and contains the following pairs: (Com-
puter Science, {Department[l]}) and (Mathematics, { Department[m]}).

A join index [21] is similar to a multiindex except that a join index supports both
forward and reverse traversal along the path; that is, there are two indices allocated between
each class and its immediate attribute along the path. That is, for a given path, the number
of indices for a join index is two times of the one for a multiindex.

For the same example shown above, a nested index will contain the following pairs:
(Computer Science, {Student[q]}) and (Mathematics, {Student[o], Student[p]}), while a

path index will contain the following pairs:

(Computer Science, {Student[q].Course[k].Teacher[i].Department][l]}) and
(Mathematics, {Student[o].Course[i]. Teacher[j]. Department[m],
Student[p].Courselj]. Teacher[j]. Department[m]}).

An access support relation [14] is an organization very similar to a path index except
that an access support relation is possible to store incomplete path instantiations using
null values in relations.

In general, a multiindex [18] is allocated on each class traversed by the path, which
solves a nested predicate by scanning a number of indices equal to the path-length. There-

fore, a multiindex has a high retrieval cost, but a low update cost. Since a nested index



Figure 2: Instances of classes in Figure 1.

only associates instances of the first class of the path with the values of the end of the
path, a nested index has a lower retrieval cost for querying on the first class with the
nested predicate on the last attribute of the path but has a high update cost for forward
and backward object traversals to access the database itself. A path index [3] provides an
association between an object at the end of the path and the instantiations ending with
the object. Therefore, a path index can be used to evaluate nested predicates on all classes
along the path; however, a path index has a high update cost.

In all the above proposed index organizations, they will be helpful only to a query
which retrieves the objects of the root class of a given path by a predicate which specifies
the value of the attribute at the end of the path. Consider another query: Retrieve all
the courses taught by those teachers who are in the Department[l]. The path-expression
for this query is Course.taught-by.work-in = ‘Department[l]’. To answer this question,
we have to scan the second index and the third index in the multiindex described above.
The nested index described above will not be helpful to answer the query, while the path
index described above will be only able to answer partial result ({Course[k]}) by scanning
all the path index. (Note that the answer of the query should be {Course[k]|, Coursell]}.)
To reduce the high retrieval cost in a multizndexr and to overcome the problem that some
queries in a nested index and a path index cannot be answered, in this paper, we propose a
new index organization for evaluating queries, called full index, where an index is allocated
for each class and each of its immediate and nested attributes along the path. For the same

example shown above, a full index will contain 10 indices as shown in Table 1.



Class Attribute  Contents

Student study Courseli], {Student[o]}),

Course[j], {Student[p]}) and (Course[k], {Student[q]})

Teacher[i], {Student[q]}) and (Teacher[j], {Student[o], Student[p]})
Department][l], {Student[q]}) and (Department[m], {Student[o], Student[p]})
Computer Science, {Student[q]}) and

Mathematics, {Student[o], Student[p]})

Course taught-by  (Teacher[i], {Course[k], Course[l]}) and (Teacher[j], {Course[i], Course[j]})

(
(
Student taught-by  (
(
(
E
Course work-in  (Department[l], {Course[k], Course[l]}) and
(
(
(
(
(
(

Student work-1n
Student name

Department[m], {Course[i], Course[j]})

Computer Science, {Course[k], Course[l]}) and

Mathematics, {Course[i], Course[j]})

Department][l], {Teacher[i]}) and (Department[m], {Teacher[j]})

Computer Science, {Teacher[i]}) and (Mathematics, {Teacher[j]})
Computer Science, {Department[l]}) and (Mathematics, {Department[m]})

Course name

Teacher work-1n
Teacher name
Department name

Table 1: An example of a full index

A comparison of a multiindex, a nested index, a path index and a full index is shown
in Figure 3. From the analysis results, we show that a full index can support any type
of queries along a given path against a class-aggregation hierarchy with a lower retrieval
cost than all the other index organizations. Therefore, our full index is suitable for queries
against a given path, where queries on subpaths might not be predictable. To reduce the
high update cost for a long given path, we can split the path into several subpaths and
allocate a separate index on each subpath [7, 14, 15]. Given a path, the number of subpaths
and the index organization of each subpath define an index configuration. But the increase
of the number of indices for subpaths will also increase the retrieval cost for scanning a
number of indices, which results in a high retrieval cost. Since a low retrieval cost and
a low update cost are always a trade-off in all index organizations, we can establish a
cost formula to look for a compromise between these two requirements. In [7], they have
proposed cost formulas to evaluate the costs of various index configurations. However, they
do not support the partial instantiations (defined in Section 2) and do not consider more
than one nested predicates along the path. In this paper, we also propose cost formulas
to determine the index configuration which can provide the best performance for various
applications by taking into account various types of queries along a given path and a set
of queries with more than one nested predicates along a given path.

The rest of this paper is organized as follows. In Section 2, we define different types of
queries along a given path. In Section 3, we introduce the proposed full index and related
index operations. In Section 4, we present the cost model for a full index and show some

analysis results of a full index compared with those of a multiindex, a path index and



Figure 3: A comparison: (a) a multiindex; (b) a nested index; (¢) a path index; (d) a full
index.

a nested index. In Section 5, we present cost formulas which determine an optimal index

configuration. Finally, Section 6 concludes this paper.

2 Query Types in a Class-Aggregation Hierarchy

An attribute of any class on a class-aggregation hierarchy is logically an attribute of the root
of the hierarchy; that is, the attribute is a nested attribute of the root class. A predicate on
a nested attribute is called nested predicate. A path is defined a C'(1).A(1).A(2).....A(n),
where C'(¢) is a class in a class-aggregation hierarchy and A(7) is an attribute of class C(¢),
1 <@ < n. The path-length indicates the number of classes along a path, that is, the
value is n. An instantiation of a path is defined as a sequence of (n + 1) objects as
O(1).0(2).....0(n + 1), where O(7) is an instance of class C(¢), 1 < ¢ < (n + 1). A patial
instantiation of a path is defined as a sequence of objects as O(¢).0(¢ + 1).....0(j), where
O(1) is an instance of class C'(¢), 1 <¢ < j <(n 4+ 1). Object-oriented query languages allow
objects to be restricted by predicates on both nested and non-nested attributes of objects.
In the following, we define types of queries along a given path against a class-aggregation

hierarchy.

Definition 1 Given a path which is defined as C(1).A(1).A(2)...A(n) (n > 1) and an
aggregation hierarchy H, a query of a simple type is expressed using path-expression as

Ci)A()....A(5) = ‘O(j)’, where 1 <1 < j < n.



That is, a query of a simple type retrieves the objects of a class along a given path
by a predicate on its nested (or non-nested) attribute, where the specified class need not to
be the root of the path and the specified attribute need not to be the end of the path. The
following query Q1 shows an example of a query of a simple type against the class-hierarchy

shown in Figure 1.

Q1: Retrieve all the students who study some courses in the Department of

Computer Science.

Q1 contains the nested predicate ‘study in the Department of Computer Science’.
Nested predicates are often expressed using path-expressions. For example, the above
nested predicate can be expressed as Student.study.taught-by.work-in.name = ‘Computer

Science’.

Definition 2 Given a path which is defined as C(1).A(1).A(2).....AMn) (n > 1) and an
aggregation hierarchy H, a query of a k-degree complex type is expressed using path-
expressions as C (). A(t)....A(j1) = O(51)’, C(i).A(t).....A(52) = O(32), ..., C(i).A(().....A(jx)
= O(jy)’, where I <m <k, 1 <i < j, < n.

That is, a query of a k-degree complex type retrieves the objects of a class along a
given path by k predicates on its k nested (or non-nested) attributes along the given path.
The following query Q2 shows an example of a query of a 2-degree complex type against the
class-hierarchy shown in Figure 1, where the path-expressions are Student.study.taught-by
= ‘Teacher[i]” and Student.study = ‘Course[i]’.

Q2: Retrieve all the students whom are taught by Teacher[i] and who study in

Course[t).

Definition 3 Given a path which is defined as C(1).A(1).A(2).....An) (n > 1) and an
aggregation hierarchy H, a general set of queries is expressed using path-expressions as
Cliy).Alt1).....A(711) = ‘O(51)’, Cliz).Ali2)..... A(j2) = O(j2)’, ..., C(ix).Altr).....A(jx)
= O(j)’, where 1 <m <k, 1 < iy < jpm < n.

That is, there are more than one queries along a given path. The following example Q3
shows two queries in a general set against the class-hierarchy shown in Figure 1, where their
path-expressions are Student.study = ‘Course[i]” and Course.taught-by.work-in.name =

‘Mathematics’, respectively.



Q3: Retrieve all the students who study in Courseli], and retrieval all the courses

taught by those teachers who are in the Department of Mathematics.

3 A Full Index

In this section, we first give the formal definition of a full index. Then, we describe four

operations on a full index, which are retrieval, update, insertion and deletion.

3.1 Organization

Definition 4 Given a path P which is defined as C(1).A(1).A(2).....A(n) (n > 1) and an
aggregation hierarchy H, a full index (FX) on P is defined as a set of indices, which are
FX!, FXZ? ..., FX!, FXZ, ..., FX" where FX! is an index on class C (i) and attribute
A@GG), 1 <i <5 <n.

For example, let a path = Student.study.taught-by.work-in.name of H be shown in
Figure 1 and the instances of classes in H be shown in Figure 2, a full index consisting of
ten indices is described as follows.

The first index F X on class Student and attribute study contains the following pairs:

, {Student[o]}),
(Courselj], {Student[p]}) and
(Course[k], {Student[q]}).

[

(Course[i

.

The second index F X? on class Student and attribute taught-by contains the following

pairs:

(Teacherli], {Student[q]}) and
(Teacherlj], {Student[o], Student[p]}).

The third index F X} on class Student and attribute work-in contains the following

pairs:

(Department[l], {Student[q]}) and
(Department[m], {Student[o], Student[p]}).

The forth index F'X{ on class Student and attribute name of class Department

contains the following pairs:

(Computer Science, {Student[q]}) and
(Mathematics, {Student[o], Student[p]}).

8



The fifth index F X3 on class Course and attribute taught-by contains the following
pairs:
(Teacherli], { Course[k], Course[l]}) and
(Teacherlj], {Course[i], Course[j]}).

The sixth index F X3 on class C'ourse and attribute work-in contains the following

pairs:

(Department[l], { Course[k], Coursel[l]}) and
(Department[m)], { Course[i], Course[j]}).

The seventh index F X, on class Course and attribute name of class Department

contains the following pairs:

(Computer Science, {Course[k], Course[l]}) and
(Mathematics, {Course[i], Coursel[j]}).

The eighth index F X3 on class T'eacher and attribute work-in contains the following

pairs:

(Department[l], { Teacher[i]}) and
(Department[m)], { Teacher[j]}).

The ninth index F X3 on class Teacher and attribute name of class Department

contains the following pairs:

(Computer Science, {Teacher[i]}) and
(Mathematics, {Teacher[j]}).

The tenth index F' X} on class Department and attribute name contains the following

pairs:

(Computer Science, {Department[l]}) and
(Mathematics, {Department[m]}).

3.2 Operations

A full index supports a fast retrieval of all types of queries defined in Section 2. When an
evaluation of a nested predicate against the nested attribute A(j) of class C'(7), it requires a
lookup of a single index FX{, where 1 < ¢ < j < n. Suppose that an instance O(7) of class

C(7) along the path has an object O(i + 1) as the value of the attribute A(z). Now, O(7)
is updated to a new object O'(¢ + 1). An update to the full index proceeds as follows.



First, we take a lookup of index F X! and replace O(i +1) of O(z) with a new object O'(:
+ 1). Second, we update the index F'X* by using the index FFX*~! and F X}, where 1 <
m < i and 1 < k < n. Third, we update the index F'X by using the index F X" ! and
FX, where 1 <m < n.

As the example shown in Figures 1 and 2, suppose the object in attribute taught-by of
Course[t] is updated from T'eacher[j] to Teacher[i]. Then, a series of operations of update
on the full index are performed as follows.

First, we take a lookup of the index F X3 and replace Teacher[j] of Course[i] with
Teacher(i]; that is, F'X3 contains the following pairs:

(Teacher]i], {Course[i], Course[k], Course[l]}) and
(Teacher[j], {Course[j]}).

Second, we update the index FX? by using FX] and F'X2; that is, F X? contains

the following pairs:

(Teacherli], {Student[o], Student[q]}) and
(Teacher[j], {Student[p]}).

Then, we update the index F X7 by using FX{ and F'X3; that is, F X7 contains the

following pairs:

(Department[l], {Student[o], Student[q]}) and
(Department[m], {Student[p]}).

Moreover, we update the index F'X{ by using F'X{ and F'X}; that is, F X contains

the following pairs:

(Computer Science, {Student[o], Student[q]}) and
(Mathematics, {Student[p]}).

Third, we update the index F'X35 by using F X3 and F'X73; that is, F* X3 contains the

following pairs:

(Department[l], { Course[i], Course[k], Course[l]}) and
(Department[m], {Course[j]}).

Then, we update the index F X3 by using F' X3 and F'X3; that is, F X3 contains the

following pairs:

(Computer Science, {Course[i], Course[k], Course[l]}) and
(Mathematics, {Course[j]}).

10



Insertion and deletion operations are similar to the update operation. We perform
an insertion/deletion operation of an object on index I'X!, instead of the replacement

operation in the first step of the update to the index.

4 Performance Analysis

In this section, we will describe the cost model and analyze some performance results of a
full index. Moreover, a comparison of performance of these related indexing schemes will

also be presented.

4.1 Cost Model

In this paper, we use a cost model which is similar to the one proposed in [3, 7], in which
the data structure to model indices is based on a B-tree [2, 11]. Similar to their model
[3, 7], we assume that the values of attributes are uniformly distributed among instances
of the class and all key values have the same length. However, in [3, 7], since a nested
index and a path index can not support any query for partial instantiations, they need
to make one more assumption: no partial instantiations; that is, each instance of a class
C(7) is referenced by instances of class C'(i - 1), 1 < ¢ < n. In this paper, we release this
assumption to support a query of any type for partial instantiations in a full index by
taking into account of ‘NULL’ value of instances. Given a path C(1).A(1).....A(n), the

parameters that we consider in the cost model are grouped as follows.

Parameter Description

DV (i) Number of distinct values held in attributes A(7) including the NULL
value, 1 <1 < n.

m(1) Average number of values for a set for attribute A(z), 1 <7 < n.

D(2) Number of distinct sets for attribute A(z), 1 <7 < n; that is,
- (78

N(7) Cardinality of class C'(¢) including the NULL value, 1 <7 < n.

K(2) Average number of instances of class C'(¢) with the same set of
values for attribute A(¢); that is, K(z) = [ ggz; 1.

UIDL Length of the object-identifier in bytes.

PS Page size in bytes.

d Order of a nonleaf node.

f Average fanout from a nonleaf node.

11



pp Length of page pointer.

kl Average length of a key value for the indexed attribute.
ol Length of a header in an index record.
DS Length of the directory at the beginning of the record,

when the record size is greater than the page size.

Moreover, to compare these indexing schemes on the same ground, we use the same
assumptions and parameters as those in [3], except that we consider the case that an
attribute A(2) has a set of values, instead of a single value, and the average number of

values in a set is m(¢). Therefore, we use DV (¢) to denote number of distinct values for

A7), and D(z) (= (Dmv(%')) ) to denote the number of distinct sets. In this case, when A(7)
has a single value (i.e., m(¢) = 1), DV(:) = D(¢). That is, we consider a more general
case in A(7). It is straightforward to extend the cost models [3] of multiindex, path index,
and nested index to consider the case that an attribute has a set of values, instead of a
single value. In this paper, we do have used these extended cost models of those indexing
schemes in our performance comparison described in section 4.5. Nore that, here, to simplify
our presentation for the performance analysis, we have omitted some parameters used in
[3], since they can be easily derived from the other parameters. For the values of those

parameters which are not critical in the comparison, we have kept them as constants; those

parameters are also kept constant in [3].

4.2 Retrieval Cost

Let K (¢, j) be the average number of instances of class C'(¢) having the same set of values
i ,
held in the nested attribute A(j), where 1 < ¢ < j < n; that is, K(z, j) = [[ K(r). XF?

is denoted as the average length of a leaf-node index record for the index FX{ in the full

index and
XFi = K(i, j))m@)UIDL + kl + ol, XPl<PS,
XF! = K(i, jym()UIDL + kl + ol + DS,  XF! > PS5,
where DS = [ Ix"(i,j)m(i)géDL-l-kHol 1 (UIDL + pp).

The number of leaf pages LPZ: for the index FX{ is

Lpl = B 7, XFi<PS,
LX—FiJ
LPI = D(j)[ 347, XF! > PS.

12



The number of index pages RC? accessed in the index FX? for a nested predicate on

class C'(¢) with a nested attribute A(y) is
RCY = h(i, j) + 1, XFi < PS,

where A(z, 7)(= [log; D(j)]) is the number of nonleaf nodes that must be accessed in

the index FXf When the record size is larger than the page size, i.e., XF{ > PS, npis

the number of leat pages needed to store the record, i.e., np = V;@JW Therefore,

RCY = h(i, j) + np, XF! > PS.

4.3 Maintenance Cost

The index maintenance cost deriving from update, deletion or insertion operations for an
instance of a class C'(¢) is denoted by U, D and I, respectively. To simplify the analysis,
we consider only the costs of leaf-page modification and exclude the costs of index page
splits. The cost C BM® of an update on the index F' X! is the sum of the cost of removing
the UID of object O(¢) from the record associated with its attribute O(: + 1) and the cost
of adding it to the new value O'(¢ 4 1); that is,

CBM: = CO(1 + pl),

where C'O denotes the cost of finding the leaf node containing the key value and the
cost of reading and writing the leaf node, and pl is the probability that the old and new
values are on different leaf node.

When a leaf page is modified, one page access is needed to read the leaf page containing
the update record, and another one page access is needed to write this page; in addition,
h(i, ©) pages are accessed to determine the leaf node containing the record to be updated.

Therefore,
CO = h(i, 1) + 2, XF: < PS.

When the record size is larger than the page size and np is the number of leaf pages

. XF}
needed to store the record, i.e., np = [ 52
accessed to find the header of the record with the old value. From the header of the record,
it is possible to determine the page from which a U1 D must be deleted or to which a UID

must be added. If this page is different from the page containing the header of the record,

|, there are h(i, 1) + 1 of pages which must be

a further page access must be performed. This probability is given by %. Therefore,
CO = h(i, i)—l—2—|—”i;1, XFi> PS.

13



The probability that the current and new values are on different leaf nodes is
pl =1, XFt> PS,
XF: < PS.

Moreover, an update operation on the index F X! will cause other associated indices
to be updated as stated in Subsection 3.2. When an index F'X* is updated (1 <m <1,
< k < n), the total cost for this update consists of the update cost C BM¥ on the index
FXF and the retrieval cost 2RC%. (Note that one cost RCY is for finding O(k + 1) to
determine which an object O(k + 1) for object O(k) to be updated, and the other one cost
RCQ is for finding O’(k + 1) to determine which a new object O’(k + 1) to be updated to.)

Therefore, the total update cost U; is

i—1 n n
U;=CBM!+ Y M (CBMF +2RCF) + > (CBM[" +2RCT).
m=1 k=1 m=i+1

Since there is only a deletion of an old value or an insertion of a new value on the

index F' X!, pl is 0. Therefore, the cost of deletion D; and the cost of insertion /; are given

by

i—1 n n
Di=1;=CO+ > 3 (CBM} +2RCE) + > (OBM™ 4+ 2RCT).
m=1 k=1 m=i+1

4.4 Storage Cost

The number of nonleaf pages NLP{ for the index FX{ is

. [ﬁ]
NLP! = [E2] + [—=] + ... + [X],

where LO = min(D(y), LPZ:) and each term is successively divided by f until the last
term X is less than f.
Then, the total storage cost SC for a full index is

SC =3"ST(LP! + NLP).

=1 7=1

4.5 A Comparison

In this subsection, we will show a number of interesting results of a full index (denoted
as F'X) on the basis of the analysis cost model described in the above subsections and
compare the performance of the full index with those of a multiindex (denoted as M X),

a nested index (denoted as NX) and a path index (denoted as PX) [3].) (Note that since
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a join index is similar to a multiindexr and an access support relation is similar to a path
index, we omit the performances for a join index and an access support relation.) By
using different values of parameters, we simulate some interesting situations for different
application requirements. However, there are some parameters kept constant in all the
simulations, which are N(1) = 200,000, UIDL =8, kl = 2,0l =6,pp =4, f =218, d =
146 and PS = 4096. The values of these parameters are the same as those in [3].

Figure 4 shows the retrieval costs for queries of a simply type with a path-expression
C(1).A(1)....A(3) = ‘O(3)’, by using a multiindex, a nested index, a path index and a full
index, respectively, where n = 3, m(1) = m(2) = m(3) =1, K(2) = K(3) = 10, and K(1)
is varied from 1 to 50. Figure 5 shows the retrieval costs for queries of a simply type with a
path-expression C'(1).A(1)....A(3) = ‘O(3)’, by using a multiindex, a nested index, a path
index and a full index, respectively, where n =3, K(1) = K(2) = K(3) =10, m(2) = m(3)
= 1, and m(1) is varied from 1 to 5. From these two figures, we observe that the retrieval
costs for these four index are increased with the values of K (1) or m(1). The reason is
that as K (3) or m(3) are increased, the size of a leaf-node index record is increased, which
may result in an increase of the number of leat pages for the index record. Consequently,
the retrieval costs are increased. Moreover, since the multiindex requires scanning three
indices to access the desired objects, the multizndex has the highest retrieval cost. The
full index has a lower retrieval cost than the multiindex and the path index. The reason
is that the full index requires only one lookup in the index F X}, but the multiindex
requires one lookup for each index and the path index has to take a lookup for a larger
size of index than the full index. In this case, the nested index is the same as the index
FX? of the full index. Therefore, the nested index has the same retrieval cost as the full
index.

Figure 6 shows the retrieval costs for queries of a simply type with a path-expression
C(1).A(1)....A(n) = ‘O(n)’, by using a full index, a multiindex, a nested index and a
path index, respectively, where m(y) = 1, K(y) = 2, 1 <y < n and n is varied from 2
to 10. For the same reasons in Figure 4, the multiindex has the highest retrieval cost,
and the full index and the nested index have the lowest retrieval cost. Moreover, Since
a multiendex 1s allocated on each class traversed by the path, which is solving a nested
predicate by scanning a number of indices equal to the path-length, the retrieval cost of the
multiindex is increased as n is increased. A path index provides an association between
an object at the end of the path and the instantiations ending with the object. Therefore,
the index size of a path index is increased as n is increased, which results in an increase of

the retrieval cost. Since the index F'X] of a full index and a nested index only associate
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Figure 4: The retrieval cost under different values of K(1).

Figure 5: The retrieval cost under different values of m(1).
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Figure 6: The retrieval cost under different values of the path-length (n).

instances of the first class of the path with the values of the end of the path, a full index
and a nested index have lower retrieval costs and these costs are not affected by n.

Consider queries of a simply type with path-expressions C(1).A(1)....A(y) = ‘O(y),
where 1 < j <n,m(y)=1, K(y) =2,1 <y <n and n is varied from 2 to 10. Suppose a
multiindex, a nested index, a path index and a full index have been allocated for queries
of a simple type with a path-expression C'(1).A(1)....A(n) = ‘O(n)’, respectively. Since a
path index and a nested index can not support any query for partial instantiations as stated
before, a lookup in real databases is required. Therefore, the retrieval costs for a nested
index and a path index will be very high. In Figure 7, we compare the average retrieval
cost based on a multiendexr and a full index for all the queries with path-expressions
C(1).A(1)....A(7) = ‘O(y)’, where 1 < j < n, which have the same probability. From this
figure, we can find that a full index can provide a constant retrieval cost for the reason
of only one lookup on an index for each query. While the retrieval cost for a multiindex
is increased as n is increased for the reason of requiring scanning a number of indices for
each query.

Figure 8 shows the average retrieval cost for queries in a general set with path-
expressions C'(¢).A(¢)....A(j) = ‘O(y)’, where 1 <¢ < n,i <j <n and nis varied from 2 to
10. For the same reasons in Figure 7, we can find that a full index can provide a constant
retrieval cost, while the retrieval cost for a multiindex is increased as n is increased.

Figure 9 shows the average update costs for a path = C(1).A(1)....A(n), by using
a full index, a multiindex, a nested index and a path index, respectively, where m(y)
=1, K(y) =4, 1 <y <n and n is varied from 2 to 10. A multiindex has the lowest

average update cost for the reason of updating a single index for each update operation.
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Figure 7: The average retrieval cost for queries of a simply type.

Figure 8: The average retrieval cost for queries in a general set.
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Figure 9: The average update cost.

As stated in [3], for an update on an object O(¢), a path index requires the cost for a
forward traversal and the cost of a B-tree update, and a nested index requires the costs
for a forward and a backward traversals and the cost of a B-tree update. (Note that a
forward traversal is defined as the accesses of objects O(¢ + 1),..., O(n) such that O(:
+ 1) is referenced by object O(z) through attribute A(z), ..., and O(n) is referenced by
object O(n - 1) through attribute A(n - 1). On the other hand, a backward traversal
is defined as the accesses of objects O(¢ - 1),..., O(2) such that O(: - 1) is referenced by
object O(7) through attribute A(z - 1), ..., and O(1) is referenced by object O(2) through
attribute A(1).) The cost for a forward traversal is in proportion to n, and the cost for
a backward traversal is in proportion to 2" [3]. Therefore, a nested index has a higher
average update cost than a path index, and a path index has a higher average update cost
than a multiindex. (Note that as stated in [3], the update cost of the traversal operations
for a nested index is also related to the size of the real database involved in the path, while
the update cost of our full index is independent of the size of the real database involved in
the path.) Since in a full index, an update operation in an index may cause some other
update operations in other indices, the average update cost for a full index is higher than
the one for a multizndex. Moreover, the number of updated indices for an update in a full
index is in proportion to n? and the cost for these updated indices is higher than the cost
for a forward traversal in a path index. Therefore, a full index has a higher average
update cost than a path index. When n is small, since the cost for a backward traversal
in a nested index is lower than the cost for the updated indices in a full index, a nested
index has a lower average update cost than a full index. On the other hand, when n > 5,

a full index has a lower average update cost than a nested index.

19



Figure 10: The storage cost for K(2) = K(3) = 10 under different value of K(1).

Figure 10 shows the storage costs for a full index, a multiindex, a nested index and
a path index, where n = 3, m(1) = m(2) = m(3) = 1, K(2) = K(3) = 10, and K(1) is
varied from 1 to 50. Obviously, the full index can reduce the retrieval cost at the cost of
increasing the storage cost; therefore, the full index has a higher storage cost than all the
others. When n = 3, there are six indices in the full index, but there are three indices
in the multiindex and there is only one index in the nested index and the path index.
Since a path index records all the instantiations ending with the object of end of the path
and some instantiations may share some references, a path index has a certain degree of
redundancy and has a higher storage cost than a multiindex. Moreover, when K(z) is high
enough, the path indexr may need a higher storage cost than the full index. Figure 11
shows the storage costs for a full index and a path index, where n = 3, m(1) = m(2) =
m(3) =1, K(2) = K(3) = 1, and K(1) is varied from 50 to 80. From this figure, we can
find that when K(1) > 57, the path index needs a higher storage cost than the full index.

5 Optimal Index Configuration

To reduce the high update cost for a long given path, we can split the path into several
subpaths and allocates a separate index on each subpath [7, 14]. Given a path, the number
of subpaths and the index organization of each subpath define an index configuration. But
the increase of the number of indices for subpaths will also increase the retrieval cost for
scanning a number of indices, which results in a high retrieval cost. Since a low retrieval
cost and a low update cost are always a trade-off in all index organizations, we can establish

a cost formula to look for a compromise between these two requirements. In [7], they have
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Figure 11: The storage cost for K(2) = K(3) = 1 under different value of K(1).

proposed cost formulas to evaluate the costs of various index configurations. However,
they do not support the partial instantiations and do not consider more than one nested
predicates along the path. In this section, we will propose cost formulas to determine the
index configuration which can provide the best performance for various applications by
taking into account various types of queries along a given path and a set of queries with
more than one nested predicates along a given path.

For example, suppose that we have a path = C(1).A(1)....A(3), where path-length =
3. This path can be split in several different ways. All the possible split ways s; (1 <@ < 4)
are grouped as follows, where Pf denotes the jth subpath in the ¢th split way, and on the
subpath Pij, Plj_c and Pf _a denote the starting class and the ending attribute, respectively:

Split Way Subpaths Boundary

E Pl =C(1).A(1) Ple=1:Pla=1
PE = C(2).A2) Ple=2:Pla=2
P} = (C(3).A(3) Plce=3:Pa=3

PN Py = C(1).A(1).A(2) Pyc=1:Pla=2
P; = C(3).A(3) Pic=3:Pla=3

3 Py = C(1).A(1) Pic=1:Pla=1
P = C(2).A(2).A(3) Pice=2:Pla=3

Sq : Pl = C(1).A(1).A(2).A(3) Ple=1:Pla=3
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Let us consider the split way ss, we can allocate an index organization such as a
multiindex(M X)), a nested index(N X)), a path index(PX) and a full index(F X), on each
subpath. For example, { X -> P;, NX -> P}} denotes that a full index is allocated on
subpath P] and a nested index is allocated on subpath P}, respectively.

In general, given a path C(1).A(1)....A(n), the set of split ways S is {s1, 32, ..., 8-},
where r denotes the number of split ways of the path, and each split way s; (1 < ¢ < r)is
{P!, ..., P?}, where g denotes the number of subpaths of s;. The organization sets for s; is
ITS; = {IT} > P, .. IT? -> P}, where ITF € {MX, NX, PX, FX},1 <i<rand
1 <k <g.

5.1 Access Cost

Given a path C(1).A(1)....A(n), a split way s; and its index organization set ITS; (1 <1
< r), the retrieval cost for a query with a path-expression C(7).A(7)....A(y) = ‘O(5 + 1)
(1 < <5 <n)isdenoted as Cost_A;(2,5) and is obtained as follows.

Cost_A(1, j) = RCy(1, P} _c) +
+ RCy(P}_¢,P!_a)
+ RCO{(PF e,PT a) + ...
+ RC{(P]" ¢, P["a)
+ RC{( P a,j),
where P/™' ¢ < i < Plee, P".a < j < P 4,1 <1< m < g and ¢ is the number
of subpaths of s;. Moreover, RC;(a, b) = RC®, when IT} = ‘FX' P/ ¢c<a<b< Pla

and 1 <y < g; that is, a full index is allocated on subpath PY. If IT} is ‘MX’, ‘NX’ or
‘PX’, RCy(a, b) can be obtained as described in [3].

5.2 Maintenance Cost

Given a path C(1).A(1)....A(n), a split way s; and its index organization set ITS; (1 <
t < r), the update cost for O(z + 1) of O(z) (1 < ¢ < n) is denoted as Cost_U,(7) and is
obtained as follows.

Cost Uy (1) = Ul1), Ple<i<Pla.

Moreover, Ul(i) = U;, when IT! = ‘FX’ and 1 <[ < g; that is, a full index is
allocated on subpath P!. Tf IT} is ‘MX’, ‘NX’ or ‘PX’, U/(4) can be obtained as described
in [3]. As similar to the update cost, the deletion cost Cost_D;(i) and the insertion cost
Cost_I;(i) can be easily obtained.
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5.3 Cost Formulas

The total cost of an index configuration with a split way s; and its a corresponding orga-
nization set [T} for a query with a path-expression C(2).A(2)....A(j) = ‘O + 1) (1 <4
< j < n) is denoted as

aCost_A(i, j) + Z BmCost U (m) + Z Ym Cost_Dy(m) + Z 0, Cost_I;(m),

m=1 m=1 m=1
where o + Zﬂm—l—Z’ym—l—Z(Sm:l.
m=1 m=1 m=1

Moreover, the total cost of an index configuration with a split way s; and its a cor-
responding organization set [T} for a set queries with path-expressions C'(i1).A(21)....A(J1)
=‘O(j1 + 1), C(12).A(22)....A(J2) = ‘O(j2 + 1), ..., Clix)-A(ix).... A(Jr) = ‘O + 1) (k
> 1, 1<q<kand1<iq<jq§n) is denoted as

n

ZOéqCOSt Ay, 74) + Z BmCost U(m) + Z YmCost_Dy(m) + Z 0, Cost_I;(m),

q=1 m=1 m=1 m=1
k n n n
WhereZaq—l— Zﬂm—l— Z’ym—l— Z(Sm:l.
g=1 m=1 m=1 m=1

Therefore, given a path C'(1).A(1)....A(n) and a set of queries with path-expressions
C(i1). A(i1).... A(J1) = O(j1 + 1), C(1g). A(22).... . A(J2) = 02+ 1), ooy C(i) . A(7g)..... A(Jk)
=O0O(r+ 1) (k>1,1<¢<kand 1 <, <j, <n), the optimal index configuration can
be obtained by trying all possible split ways combined with all possible index organization

sets and then finding one which can provide the minimum cost.

5.4 Simulation Results

In this subsection, we do several simulations to find an optimal index configuration for
queries along a given path against a class-aggregation hierarchy. In all these simulations,
we assume that n = 8, N(1) = 200,000, m(y) =1, K(y) =2, (1 <y <n),UIDL =38, ki
=20l =6,pp=4, f =218, d = 146 and PS = 4096. Since the cost for an insertion(or
a deletion) is in proportion to the cost for an update, we only consider the retrieval and
update costs by letting the probabilities of insertion and deletion be 0 in the following
simulations. The retrieval probability (denoted as R) is varied form 1 to 0, at the same
time, the update probability (denoted as U) is varied from 0 to 1.

Figure 12 shows the optimal index configurations for a query of a simply type with
a path-expression C(1).A(1).....A(8) = ‘O(8)’. Figure 13 shows the optimal index con-

figurations for queries of a 2-degree complex type with the same probability to be per-
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formed, which path-expressions are C'(1).A(1).....A(8) = ‘O(8)" and C(1).A(1).....A(4) =
‘O(4)’, respectively. Figure 14 shows the optimal index configurations for queries of a 8-
degree complex type with the same probability to be performed, which path-expressions are
C(1).A(1).....A(j) = ‘O(y)’, 1 < j < 8. Figure 15 shows the optimal index configurations
for four queries in a general set with the same probability to be performed, which path-
expressions are C'(1).A(1).....A(8) = ‘O(8), C(2).A(2).....A(5) = ‘O(5)’, C(3).A(3).....A(7)
=‘0(7) and C(4).A(4).....A(8) = ‘O(8)’, respectively. Figure 16 shows the optimal index
configurations for queries in a general set with the same probability to be performed, which
path-expressions are C'(¢).A(¢).....A(J) = ‘O(j), 1 < <5 < 8.

From these figures, in general, we can find that a full index on the path C'(1).A(1).....A(8)
is an optimal index configuration when the retrieval probability is high. The reason is that
a full index can support any type of queries along a given path with a lower retrieval
cost than all the other index organization, and the update probability is so small such that
the update cost is neglectable; therefore, the path does not have to be split into several
subpaths for reducing update cost. As the retrieval probability is decreased (that is, the
update probability is increased), the update cost is not neglectable, which results in a need
of a split on the path for reducing the update cost. And for each split subpath, a full index,
a nested index or a path index is allocated according to the query status on this subpath.
Since a nested index and a path index cannot support the partial instantiations, a full
index is always a good choice to be allocated on each subpath as shown on Figures 14 and
16. When the update proability is high, a multiindex on the path C'(1).A(1).....A(8) is
a good choice for the reasons of requiring the lower update cost than the others and the

neglectable retrieval cost.

6 Conclusion

In this paper, we have proposed a new index organization for evaluating queries, called
full index, where an index is allocated for each class and its attribute (or nested attribute)
along the path. From the analysis results, we have found that a full index can support any
type of queries along a path against a class-aggregation hierarchy with a lower retrieval cost
than all the other index organizations (a multiindex, a nested index and a path index).
Moreover, to reduce the high update cost for a long given path, we have split the path into
several subpaths and allocated a separate index on each subpath. Since a low retrieval cost
and a low update cost are always a trade-off in all index organizations, we have established

a cost formula to look for a compromise between these two requirements. In [7], they have
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Figure 12: The optimal index configurations for a query of a simple type.

Figure 13: The optimal index configurations for queries of a 2-degree complex type.
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Figure 14: The optimal index configurations for queries of a 8-degree complex type.

Figure 15: The optimal index configurations for four queries in a general set.
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Figure 16: The optimal index configuration for queries in a general set.

proposed cost formulas to evaluate the costs of various index configurations. However,
they do not support the partial instantiations and do not consider more than one nested
predicates along the path. In this paper, we have proposed cost formulas to determine the
best index configuration to provide the best performance for various applications by taking
into account various types of queries along a given path and a set of queries with more
than one nested predicates along a given path. From the simulation results, in general, a
full index is an optimal index configuration against a path when the retrieval probability
is high. How to provide an efficient index organization for queries along more than one

paths against a class-aggregation hierarchy is the future research direction.
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