
Design of a New Indexing Organization for a
Class�Aggregation Hierarchy in Object�Oriented

Databases �

Chien�I Leey� Ye�In Changz and Wei�Pang Yang�

yInstitute of Information Education zDept� of Applied Mathematics
National Tainan Teachers College National Sun Yat�Sen University

Tainan� Taiwan Kaohsiung� Taiwan
Republic of China Republic of China

fE�mail� leeci�ipx�ntntc�edu�twg fE�mail� changyi�math�nsysu�edu�twg
fTel� �������		
			 �ext� ���g fTel� ������������� �ext�
�	�g

fFax� �������������g fFax� ���������
���g

�Dept� of Computer and Information Science
National Chiao Tung University

Hsinchu� Taiwan
Republic of China

fE�mail� wpyang�cis�nctu�edu�twg

�This research was supported in part by the National Science Council of Republic of China under Grant
No� NSC���������E���������

Abstract

In an object�oriented databases� a class consists of a set of attributes� and the values of the
attributes are objects that belong to other classes� that is� the de�nition of a class forms a
class�aggregation hierarchy of classes� A branch of such a hierarchy is called a path� There
have been several index organizations proposed to support object�oriented query languages�
including multiindex� join index� nested index and path index� In all the proposed index
organizations� they are helpful only to a query which retrieves the objects of the root class
of a given path by a predicate which speci�es the value of the attribute at the end of the
path� In this paper� we propose a new index organization for evaluating queries� called
full index� where an index is allocated for each class and its attribute �or nested attribute
along the path� From the analysis results� we show that a full index can support any
type of queries along a given path with a lower retrieval cost than all the other index
organizations� Moreover� to reduce the high update cost for a long given path� we will split
the path into several subpaths and to allocate a separate index on each subpath� Given a
path� the number of subpaths and the index organization of each subpath de�ne an index
con�guration� Since a low retrieval cost and a low update cost are always a trade�o� in
all index organizations� we also propose cost formulas to determine the index con�guration
which can provide the best performance for various applications by taking into account
various types of queries along a given path and a set of queries with more than one nested
predicates along a given path�

�Key Words� Access methods� complex objects� index selection� object�oriented databases�
query optimization�

	

� Introduction

The new generation of computer�based applications� such as computer�aided designed and

manufacturing �CAD�CAM� multimedia databases �MMDB� and software development

environments �SDEs� requires more powerful techniques to generate and manipulate large

amounts of data� The traditional well�known record�based relational data model does

not provide the possibility of directly modeling complex data� Moreover� many complex

relationships among data� for example� instantiation� aggregation and generalization� can

not be well de�ned in the relational data model� Furthermore� the relational data model

does not provide mechanisms to associate data behavior with data de�nitions at schema

level�

Object�oriented database management systems �	� 	�� 	�� 	
� 	�� ��� ��� �
� ��� rep�

resent one of the most promising directions in the database area towards meeting require�

ments posed by advanced applications� An object�oriented data model not only provides

great expressive power to describe data and to de�ne complex relationships among data�

it but also provides mechanisms for behavioral abstraction� In an object�oriented data

model ��� �� ��� any real�world entity is represented by only one data modeling concept�

the object� Each object is identi�ed by a unique identi�er �UID� The state of each object

is de�ned at any point in time by the value of its attributes� The attributes can have an

value both primitive objects �for example� strings� integers� or booleans and non�primitive

objects� which in turn� consist of a set of attributes� Objects with similar attributes are

grouped into classes� A class C consists of a number of attributes� and the value of an

attribute A of an object belonging to the class C is an object or a set of objects belonging

to some other class C �� The class C � is called the domain of the attribute A of the class

C and this association is called an aggregation relationship between class C and C �� The

class C � in turn consists of a number of attributes� and their domains are other classes�

In general speaking� a class is a hierarchy of classes of aggregation relationships� called

aggregation hierarchy� A branch of such a hierarchy is called a path� An example of a

class�aggregation hierarchy is shown in Figure 	� An example of a path against this class�

aggregation hierarchy is Student�study�taught�by�work�in�name� There have been several

index organizations �
� �� �� 	�� 	�� 	�� 	�� �	� ��� proposed to support object�oriented

query languages� including multiindex �	��� join index ��	�� nested index �
�� path index

�
� and access support relation �	���

Consider the following query� Retrieve all the students who study some courses in

the Department of Computer Science� for the class�aggregation hierarchy as shown in Fig�

�

Figure 	� An example of a class�aggregation hierarchy�

ure 	 and the related instances shown in Figure �� where �study in the Department of Com�

puter Science� is a nested predicate� �Note that nested predicates are often expressed using

path�expressions� the above nested predicate can be expressed as Student�study�taught�

by�work�in�name � �Computer Science�� Given a path � Student�study�taught�by�work�

in�name� there are four indices in a multiindex set� The �rst index is on the sub�

path Student�study and contains the following pairs� �Course�i�� fStudent�o�g� �Course�j��

fStudent�p�g and �Course�k�� fStudent�q�g� The second index is on the subpath Course�taught�

by and contains the following pairs� �Teacher�i�� fCourse�k�� Course�l�g and �Teacher�j��

fCourse�i�� Course�j�g� The third index is on the subpath Teacher�work�in and contains

the following pairs� �Department�l�� fTeacher�i�g and �Department�m�� fTeacher�j�g� The

forth index is on the subpath Department�name and contains the following pairs� �Com�

puter Science� fDepartment�l�g and �Mathematics� fDepartment�m�g�

A join index ��	� is similar to a multiindex except that a join index supports both

forward and reverse traversal along the path� that is� there are two indices allocated between

each class and its immediate attribute along the path� That is� for a given path� the number

of indices for a join index is two times of the one for a multiindex�

For the same example shown above� a nested index will contain the following pairs�

�Computer Science� fStudent�q�g and �Mathematics� fStudent�o�� Student�p�g� while a

path index will contain the following pairs�

�Computer Science� fStudent�q��Course�k��Teacher�i��Department�l�g and

�Mathematics� fStudent�o��Course�i��Teacher�j��Department�m��

Student�p��Course�j��Teacher�j��Department�m�g�

An access support relation �	�� is an organization very similar to a path index except

that an access support relation is possible to store incomplete path instantiations using

null values in relations�

In general� a multiindex �	�� is allocated on each class traversed by the path� which

solves a nested predicate by scanning a number of indices equal to the path�length� There�

fore� a multiindex has a high retrieval cost� but a low update cost� Since a nested index

Figure �� Instances of classes in Figure 	�

only associates instances of the �rst class of the path with the values of the end of the

path� a nested index has a lower retrieval cost for querying on the �rst class with the

nested predicate on the last attribute of the path but has a high update cost for forward

and backward object traversals to access the database itself� A path index �
� provides an

association between an object at the end of the path and the instantiations ending with

the object� Therefore� a path index can be used to evaluate nested predicates on all classes

along the path� however� a path index has a high update cost�

In all the above proposed index organizations� they will be helpful only to a query

which retrieves the objects of the root class of a given path by a predicate which speci�es

the value of the attribute at the end of the path� Consider another query� Retrieve all

the courses taught by those teachers who are in the Department�l�� The path�expression

for this query is Course�taught�by�work�in � �Department�l��� To answer this question�

we have to scan the second index and the third index in the multiindex described above�

The nested index described above will not be helpful to answer the query� while the path

index described above will be only able to answer partial result �fCourse�k�g by scanning

all the path index� �Note that the answer of the query should be fCourse�k�� Course�l�g�

To reduce the high retrieval cost in a multiindex and to overcome the problem that some

queries in a nested index and a path index cannot be answered� in this paper� we propose a

new index organization for evaluating queries� called full index� where an index is allocated

for each class and each of its immediate and nested attributes along the path� For the same

example shown above� a full index will contain 	� indices as shown in Table 	�

�

Class Attribute Contents

Student study 	Course
i�� fStudent
o�g�
	Course
j�� fStudent
p�g and 	Course
k�� fStudent
q�g

Student taught�by 	Teacher
i�� fStudent
q�g and 	Teacher
j�� fStudent
o�� Student
p�g
Student work�in 	Department
l�� fStudent
q�g and 	Department
m�� fStudent
o�� Student
p�g
Student name 	Computer Science� fStudent
q�g and

	Mathematics� fStudent
o�� Student
p�g
Course taught�by 	Teacher
i�� fCourse
k�� Course
l�g and 	Teacher
j�� fCourse
i�� Course
j�g
Course work�in 	Department
l�� fCourse
k�� Course
l�g and

	Department
m�� fCourse
i�� Course
j�g
Course name 	Computer Science� fCourse
k�� Course
l�g and

	Mathematics� fCourse
i�� Course
j�g
Teacher work�in 	Department
l�� fTeacher
i�g and 	Department
m�� fTeacher
j�g
Teacher name 	Computer Science� fTeacher
i�g and 	Mathematics� fTeacher
j�g

Department name 	Computer Science� fDepartment
l�g and 	Mathematics� fDepartment
m�g

Table 	� An example of a full index

A comparison of amultiindex� a nested index� a path index and a full index is shown

in Figure
� From the analysis results� we show that a full index can support any type

of queries along a given path against a class�aggregation hierarchy with a lower retrieval

cost than all the other index organizations� Therefore� our full index is suitable for queries

against a given path� where queries on subpaths might not be predictable� To reduce the

high update cost for a long given path� we can split the path into several subpaths and

allocate a separate index on each subpath ��� 	�� 	��� Given a path� the number of subpaths

and the index organization of each subpath de�ne an index con�guration� But the increase

of the number of indices for subpaths will also increase the retrieval cost for scanning a

number of indices� which results in a high retrieval cost� Since a low retrieval cost and

a low update cost are always a trade�o� in all index organizations� we can establish a

cost formula to look for a compromise between these two requirements� In ���� they have

proposed cost formulas to evaluate the costs of various index con�gurations� However� they

do not support the partial instantiations �de�ned in Section � and do not consider more

than one nested predicates along the path� In this paper� we also propose cost formulas

to determine the index con�guration which can provide the best performance for various

applications by taking into account various types of queries along a given path and a set

of queries with more than one nested predicates along a given path�

The rest of this paper is organized as follows� In Section �� we de�ne di�erent types of

queries along a given path� In Section
� we introduce the proposed full index and related

index operations� In Section �� we present the cost model for a full index and show some

analysis results of a full index compared with those of a multiindex� a path index and

�

Figure
� A comparison� �a a multiindex� �b a nested index� �c a path index� �d a full
index�

a nested index� In Section �� we present cost formulas which determine an optimal index

con�guration� Finally� Section � concludes this paper�

� Query Types in a Class�Aggregation Hierarchy

An attribute of any class on a class�aggregation hierarchy is logically an attribute of the root

of the hierarchy� that is� the attribute is a nested attribute of the root class� A predicate on

a nested attribute is called nested predicate� A path is de�ned a C�	�A�	�A�������A�n�

where C�i is a class in a class�aggregation hierarchy and A�i is an attribute of class C�i�

	 � i � n� The path�length indicates the number of classes along a path� that is� the

value is n� An instantiation of a path is de�ned as a sequence of �n � 	 objects as

O�	�O�������O�n � 	� where O�i is an instance of class C�i� 	 � i � �n � 	� A patial

instantiation of a path is de�ned as a sequence of objects as O�i�O�i � 	�����O�j� where

O�i is an instance of class C�i� 	 � i � j � �n � 	� Object�oriented query languages allow

objects to be restricted by predicates on both nested and non�nested attributes of objects�

In the following� we de�ne types of queries along a given path against a class�aggregation

hierarchy�

De�nition � Given a path which is de�ned as C����A����A������A�n� �n � �� and an

aggregation hierarchy H� a query of a simple type is expressed using path	expression as

C�i��A�i������A�j�
 �O�j��� where � � i � j � n�

�

That is� a query of a simple type retrieves the objects of a class along a given path

by a predicate on its nested �or non�nested attribute� where the speci�ed class need not to

be the root of the path and the speci�ed attribute need not to be the end of the path� The

following queryQ� shows an example of a query of a simple type against the class�hierarchy

shown in Figure 	�

Q�� Retrieve all the students who study some courses in the Department of

Computer Science�

Q� contains the nested predicate �study in the Department of Computer Science��

Nested predicates are often expressed using path�expressions� For example� the above

nested predicate can be expressed as Student�study�taught�by�work�in�name� �Computer

Science��

De�nition � Given a path which is de�ned as C����A����A��������A�n� �n � �� and an

aggregation hierarchy H� a query of a k	degree complex type is expressed using path	

expressions as C�i��A�i������A�j��
 �O�j���� C�i��A�i������A�j��
 �O�j���� ���� C�i��A�i������A�jk�

 �O�jk��� where � � m � k� � � i � jm � n�

That is� a query of a k�degree complex type retrieves the objects of a class along a

given path by k predicates on its k nested �or non�nested attributes along the given path�

The following queryQ� shows an example of a query of a ��degree complex type against the

class�hierarchy shown in Figure 	� where the path�expressions are Student�study�taught�by

� �Teacher�i�� and Student�study � �Course�i���

Q�� Retrieve all the students whom are taught by Teacher�i� and who study in

Course�i��

De�nition � Given a path which is de�ned as C����A����A��������A�n� �n � �� and an

aggregation hierarchy H� a general set of queries is expressed using path	expressions as

C�i���A�i�������A�j��
 �O�j���� C�i���A�i�������A�j��
 �O�j���� ���� C�ik��A�ik������A�jk�

 �O�jk��� where � � m � k� � � im � jm � n�

That is� there are more than one queries along a given path� The following exampleQ�

shows two queries in a general set against the class�hierarchy shown in Figure 	� where their

path�expressions are Student�study � �Course�i�� and Course�taught�by�work�in�name �

�Mathematics�� respectively�

�

Q�� Retrieve all the students who study in Course�i�� and retrieval all the courses

taught by those teachers who are in the Department of Mathematics�

� A Full Index

In this section� we �rst give the formal de�nition of a full index� Then� we describe four

operations on a full index� which are retrieval� update� insertion and deletion�

��� Organization

De�nition � Given a path P which is de�ned as C����A����A��������A�n� �n � �� and an

aggregation hierarchy H� a full index�FX� on P is de�ned as a set of indices� which are

FX�
� � FX

�
� � ���� FX

n
� � FX

�
� � ���� FX

n
n � where FX

j
i is an index on class C�i� and attribute

A�j�� � � i � j � n�

For example� let a path � Student�study�taught�by�work�in�name of H be shown in

Figure 	 and the instances of classes in H be shown in Figure �� a full index consisting of

ten indices is described as follows�

The �rst index FX�
� on class Student and attribute study contains the following pairs�

�Course�i�� fStudent�o�g�

�Course�j�� fStudent�p�g and

�Course�k�� fStudent�q�g�

The second index FX�
� on class Student and attribute taught�by contains the following

pairs�

�Teacher�i�� fStudent�q�g and

�Teacher�j�� fStudent�o�� Student�p�g�

The third index FX�
� on class Student and attribute work�in contains the following

pairs�

�Department�l�� fStudent�q�g and

�Department�m�� fStudent�o�� Student�p�g�

The forth index FX�
� on class Student and attribute name of class Department

contains the following pairs�

�Computer Science� fStudent�q�g and

�Mathematics� fStudent�o�� Student�p�g�

�

The �fth index FX�
� on class Course and attribute taught�by contains the following

pairs�

�Teacher�i�� fCourse�k�� Course�l�g and

�Teacher�j�� fCourse�i�� Course�j�g�

The sixth index FX�
� on class Course and attribute work�in contains the following

pairs�

�Department�l�� fCourse�k�� Course�l�g and

�Department�m�� fCourse�i�� Course�j�g�

The seventh index FX�
� on class Course and attribute name of class Department

contains the following pairs�

�Computer Science� fCourse�k�� Course�l�g and

�Mathematics� fCourse�i�� Course�j�g�

The eighth index FX�
� on class Teacher and attribute work�in contains the following

pairs�

�Department�l�� fTeacher�i�g and

�Department�m�� fTeacher�j�g�

The ninth index FX�
� on class Teacher and attribute name of class Department

contains the following pairs�

�Computer Science� fTeacher�i�g and

�Mathematics� fTeacher�j�g�

The tenth index FX�
� on class Department and attribute name contains the following

pairs�

�Computer Science� fDepartment�l�g and

�Mathematics� fDepartment�m�g�

��� Operations

A full index supports a fast retrieval of all types of queries de�ned in Section �� When an

evaluation of a nested predicate against the nested attribute A�j of class C�i� it requires a

lookup of a single index FXj
i � where 	 � i � j � n� Suppose that an instance O�i of class

C�i along the path has an object O�i � 	 as the value of the attribute A�i� Now� O�i

is updated to a new object O��i � 	� An update to the full index proceeds as follows�

�

First� we take a lookup of index FX i
i and replace O�i �	 of O�i with a new object O��i

� 	� Second� we update the index FXk
m by using the index FXk��

m and FXk
k � where 	 �

m � i and i � k � n� Third� we update the index FXm
i by using the index FXm��

i and

FXm
m � where i � m � n�

As the example shown in Figures 	 and �� suppose the object in attribute taught�by of

Course�i� is updated from Teacher�j� to Teacher�i�� Then� a series of operations of update

on the full index are performed as follows�

First� we take a lookup of the index FX�
� and replace Teacher�j� of Course�i� with

Teacher�i�� that is� FX�
� contains the following pairs�

�Teacher�i�� fCourse�i�� Course�k�� Course�l�g and

�Teacher�j�� fCourse�j�g�

Second� we update the index FX�
� by using FX�

� and FX�
�� that is� FX

�
� contains

the following pairs�

�Teacher�i�� fStudent�o�� Student�q�g and

�Teacher�j�� fStudent�p�g�

Then� we update the index FX�
� by using FX�

� and FX�
�� that is� FX

�
� contains the

following pairs�

�Department�l�� fStudent�o�� Student�q�g and

�Department�m�� fStudent�p�g�

Moreover� we update the index FX�
� by using FX�

� and FX�
�� that is� FX

�
� contains

the following pairs�

�Computer Science� fStudent�o�� Student�q�g and

�Mathematics� fStudent�p�g�

Third� we update the index FX�
� by using FX�

� and FX�
�� that is� FX

�
� contains the

following pairs�

�Department�l�� fCourse�i�� Course�k�� Course�l�g and

�Department�m�� fCourse�j�g�

Then� we update the index FX�
� by using FX�

� and FX�
�� that is� FX

�
� contains the

following pairs�

�Computer Science� fCourse�i�� Course�k�� Course�l�g and

�Mathematics� fCourse�j�g�

	�

Insertion and deletion operations are similar to the update operation� We perform

an insertion�deletion operation of an object on index FX i
i � instead of the replacement

operation in the �rst step of the update to the index�

� Performance Analysis

In this section� we will describe the cost model and analyze some performance results of a

full index� Moreover� a comparison of performance of these related indexing schemes will

also be presented�

��� Cost Model

In this paper� we use a cost model which is similar to the one proposed in �
� ��� in which

the data structure to model indices is based on a B�tree ��� 		�� Similar to their model

�
� ��� we assume that the values of attributes are uniformly distributed among instances

of the class and all key values have the same length� However� in �
� ��� since a nested

index and a path index can not support any query for partial instantiations� they need

to make one more assumption� no partial instantiations� that is� each instance of a class

C�i is referenced by instances of class C�i � 	� 	 � i � n� In this paper� we release this

assumption to support a query of any type for partial instantiations in a full index by

taking into account of �NULL� value of instances� Given a path C�	�A�	�����A�n� the

parameters that we consider in the cost model are grouped as follows�

Parameter Description

DV �i Number of distinct values held in attributes A�i including the NULL

value� 	 � i � n�

m�i Average number of values for a set for attribute A�i� 	 � i � n�

D�i Number of distinct sets for attribute A�i� 	 � i � n� that is�

D�i �
�
DV �i�
m�i�

�
�

N�i Cardinality of class C�i including the NULL value� 	 � i � n�

K�i Average number of instances of class C�i with the same set of

values for attribute A�i� that is� K�i � d N�i�
D�i� e�

UIDL Length of the object�identi�er in bytes�

PS Page size in bytes�

d Order of a nonleaf node�

f Average fanout from a nonleaf node�

		

pp Length of page pointer�

kl Average length of a key value for the indexed attribute�

ol Length of a header in an index record�

DS Length of the directory at the beginning of the record�

when the record size is greater than the page size�

Moreover� to compare these indexing schemes on the same ground� we use the same

assumptions and parameters as those in �
�� except that we consider the case that an

attribute A�i has a set of values� instead of a single value� and the average number of

values in a set is m�i� Therefore� we use DV �i to denote number of distinct values for

A�i� and D�i ��
�
DV �i�
m�i�

�
 to denote the number of distinct sets� In this case� when A�i

has a single value �i�e�� m�i � 	� DV �i � D�i� That is� we consider a more general

case in A�i� It is straightforward to extend the cost models �
� of multiindex� path index�

and nested index to consider the case that an attribute has a set of values� instead of a

single value� In this paper� we do have used these extended cost models of those indexing

schemes in our performance comparison described in section ���� Nore that� here� to simplify

our presentation for the performance analysis� we have omitted some parameters used in

�
�� since they can be easily derived from the other parameters� For the values of those

parameters which are not critical in the comparison� we have kept them as constants� those

parameters are also kept constant in �
��

��� Retrieval Cost

Let K�i� j be the average number of instances of class C�i having the same set of values

held in the nested attribute A�j� where 	 � i � j � n� that is� K�i� j �
jY

r�i

K�r� XF j
i

is denoted as the average length of a leaf�node index record for the index FXj
i in the full

index and

XF
j
i � K�i� jm�iUIDL � kl � ol� XF

j
i � PS�

XF
j
i � K�i� jm�iUIDL � kl � ol � DS� XF

j
i � PS�

where DS � d K�i�j�m�i�UIDL�kl�ol
PS

e �UIDL � pp�

The number of leaf pages LP j
i for the index FX

j
i is

LP
j
i � d D�j�

b PS

XF
j
i

c
e� XF

j
i � PS�

LP
j
i � D�jd

XF
j
i

PS
e� XF

j
i � PS�

	�

The number of index pages RCj
i accessed in the index FXj

i for a nested predicate on

class C�i with a nested attribute A�j is

RC
j
i � h�i� j � 	� XF

j
i � PS�

where h�i� j�� dlogf D�je is the number of nonleaf nodes that must be accessed in

the index FX
j
i � When the record size is larger than the page size� i�e�� XF

j
i � PS� np is

the number of leaf pages needed to store the record� i�e�� np � d
XF

j
i

PS
e� Therefore�

RC
j
i � h�i� j � np� XF

j
i � PS�

��� Maintenance Cost

The index maintenance cost deriving from update� deletion or insertion operations for an

instance of a class C�i is denoted by U � D and I� respectively� To simplify the analysis�

we consider only the costs of leaf�page modi�cation and exclude the costs of index page

splits� The cost CBM i
i of an update on the index FX i

i is the sum of the cost of removing

the UID of object O�i from the record associated with its attribute O�i � 	 and the cost

of adding it to the new value O��i � 	� that is�

CBM i
i � CO�	 � pl�

where CO denotes the cost of �nding the leaf node containing the key value and the

cost of reading and writing the leaf node� and pl is the probability that the old and new

values are on di�erent leaf node�

When a leaf page is modi�ed� one page access is needed to read the leaf page containing

the update record� and another one page access is needed to write this page� in addition�

h�i� i pages are accessed to determine the leaf node containing the record to be updated�

Therefore�

CO � h�i� i � �� XF i
i � PS�

When the record size is larger than the page size and np is the number of leaf pages

needed to store the record� i�e�� np � d
XF ii
PS

e� there are h�i� i � 	 of pages which must be

accessed to �nd the header of the record with the old value� From the header of the record�

it is possible to determine the page from which a UID must be deleted or to which a UID

must be added� If this page is di�erent from the page containing the header of the record�

a further page access must be performed� This probability is given by np��
np

� Therefore�

CO � h�i� i � � � np��
np

� XF i
i � PS�

	

The probability that the current and new values are on di�erent leaf nodes is

pl � 	� XF i
i � PS�

pl � 	 �
b PS

XFi
i

c��

D�i���
� XF i

i � PS�

Moreover� an update operation on the index FX i
i will cause other associated indices

to be updated as stated in Subsection
��� When an index FXk
m is updated �	 � m � i� i

� k � n� the total cost for this update consists of the update cost CBMk
m on the index

FXk
m and the retrieval cost �RCk

k� �Note that one cost RCk
k is for �nding O�k � 	 to

determine which an object O�k � 	 for object O�k to be updated� and the other one cost

RCk
k is for �nding O

��k � 	 to determine which a new object O��k � 	 to be updated to�

Therefore� the total update cost U i is

U i � CBM i
i �

i��X
m��

nX
k�i

�CBMk
m � �RCk

k �
nX

m�i��

�CBMm
i � �RCm

m �

Since there is only a deletion of an old value or an insertion of a new value on the

index FX i
i� pl is �� Therefore� the cost of deletion Di and the cost of insertion I i are given

by

Di � I i � CO �
i��X
m��

nX

k�i

�CBMk
m � �RCk

k �
nX

m�i��

�CBMm
i � �RCm

m �

��� Storage Cost

The number of nonleaf pages NLP
j
i for the index FX

j
i is

NLP
j
i � dLO

f
e � d

dLO
f

e

f
e � ��� � dXe�

where LO � min�D�j� LP j
i and each term is successively divided by f until the last

term X is less than f �

Then� the total storage cost SC for a full index is

SC �
nX
i��

nX
j�i

�LP j
i � NLP

j
i �

��� A Comparison

In this subsection� we will show a number of interesting results of a full index �denoted

as FX on the basis of the analysis cost model described in the above subsections and

compare the performance of the full index with those of a multiindex �denoted as MX�

a nested index �denoted as NX and a path index �denoted as PX �
�� �Note that since

	�

a join index is similar to a multiindex and an access support relation is similar to a path

index� we omit the performances for a join index and an access support relation� By

using di�erent values of parameters� we simulate some interesting situations for di�erent

application requirements� However� there are some parameters kept constant in all the

simulations� which are N�	 � �������� UIDL � �� kl � �� ol � �� pp � �� f � �	�� d �

	�� and PS � ����� The values of these parameters are the same as those in �
��

Figure � shows the retrieval costs for queries of a simply type with a path�expression

C�	�A�	����A�
 � �O�
�� by using a multiindex� a nested index� a path index and a full

index� respectively� where n �
� m�	 � m�� � m�
 � 	� K�� � K�
 � 	�� and K�	

is varied from 	 to ��� Figure � shows the retrieval costs for queries of a simply type with a

path�expression C�	�A�	����A�
 � �O�
�� by using a multiindex� a nested index� a path

index and a full index� respectively� where n �
� K�	 �K�� �K�
 � 	�� m�� �m�

� 	� and m�	 is varied from 	 to �� From these two �gures� we observe that the retrieval

costs for these four index are increased with the values of K�	 or m�	� The reason is

that as K�
 or m�
 are increased� the size of a leaf�node index record is increased� which

may result in an increase of the number of leaf pages for the index record� Consequently�

the retrieval costs are increased� Moreover� since the multiindex requires scanning three

indices to access the desired objects� the multiindex has the highest retrieval cost� The

full index has a lower retrieval cost than the multiindex and the path index� The reason

is that the full index requires only one lookup in the index FX�
� � but the multiindex

requires one lookup for each index and the path index has to take a lookup for a larger

size of index than the full index� In this case� the nested index is the same as the index

FX�
� of the full index� Therefore� the nested index has the same retrieval cost as the full

index�

Figure � shows the retrieval costs for queries of a simply type with a path�expression

C�	�A�	����A�n � �O�n�� by using a full index� a multiindex� a nested index and a

path index� respectively� where m�y � 	� K�y � �� 	 � y � n and n is varied from �

to 	�� For the same reasons in Figure �� the multiindex has the highest retrieval cost�

and the full index and the nested index have the lowest retrieval cost� Moreover� Since

a multiindex is allocated on each class traversed by the path� which is solving a nested

predicate by scanning a number of indices equal to the path�length� the retrieval cost of the

multiindex is increased as n is increased� A path index provides an association between

an object at the end of the path and the instantiations ending with the object� Therefore�

the index size of a path index is increased as n is increased� which results in an increase of

the retrieval cost� Since the index FXn
� of a full index and a nested index only associate

	�

Figure �� The retrieval cost under di�erent values of K�	�

Figure �� The retrieval cost under di�erent values of m�	�

	�

Figure �� The retrieval cost under di�erent values of the path�length �n�

instances of the �rst class of the path with the values of the end of the path� a full index

and a nested index have lower retrieval costs and these costs are not a�ected by n�

Consider queries of a simply type with path�expressions C�	�A�	����A�j � �O�j��

where 	 � j � n� m�y � 	� K�y � �� 	 � y � n and n is varied from � to 	�� Suppose a

multiindex� a nested index� a path index and a full index have been allocated for queries

of a simple type with a path�expression C�	�A�	����A�n � �O�n�� respectively� Since a

path index and a nested index can not support any query for partial instantiations as stated

before� a lookup in real databases is required� Therefore� the retrieval costs for a nested

index and a path index will be very high� In Figure �� we compare the average retrieval

cost based on a multiindex and a full index for all the queries with path�expressions

C�	�A�	����A�j � �O�j�� where 	 � j � n� which have the same probability� From this

�gure� we can �nd that a full index can provide a constant retrieval cost for the reason

of only one lookup on an index for each query� While the retrieval cost for a multiindex

is increased as n is increased for the reason of requiring scanning a number of indices for

each query�

Figure � shows the average retrieval cost for queries in a general set with path�

expressions C�i�A�i����A�j � �O�j�� where 	 � i � n� i � j � n and n is varied from � to

	�� For the same reasons in Figure �� we can �nd that a full index can provide a constant

retrieval cost� while the retrieval cost for a multiindex is increased as n is increased�

Figure � shows the average update costs for a path � C�	�A�	����A�n� by using

a full index� a multiindex� a nested index and a path index� respectively� where m�y

� 	� K�y � �� 	 � y � n and n is varied from � to 	�� A multiindex has the lowest

average update cost for the reason of updating a single index for each update operation�

	�

Figure �� The average retrieval cost for queries of a simply type�

Figure �� The average retrieval cost for queries in a general set�

	�

Figure �� The average update cost�

As stated in �
�� for an update on an object O�i� a path index requires the cost for a

forward traversal and the cost of a B�tree update� and a nested index requires the costs

for a forward and a backward traversals and the cost of a B�tree update� �Note that a

forward traversal is de�ned as the accesses of objects O�i � 	����� O�n such that O�i

� 	 is referenced by object O�i through attribute A�i� ���� and O�n is referenced by

object O�n � 	 through attribute A�n � 	� On the other hand� a backward traversal

is de�ned as the accesses of objects O�i � 	����� O�� such that O�i � 	 is referenced by

object O�i through attribute A�i � 	� ���� and O�	 is referenced by object O�� through

attribute A�	� The cost for a forward traversal is in proportion to n� and the cost for

a backward traversal is in proportion to �n �
�� Therefore� a nested index has a higher

average update cost than a path index� and a path index has a higher average update cost

than a multiindex� �Note that as stated in �
�� the update cost of the traversal operations

for a nested index is also related to the size of the real database involved in the path� while

the update cost of our full index is independent of the size of the real database involved in

the path� Since in a full index� an update operation in an index may cause some other

update operations in other indices� the average update cost for a full index is higher than

the one for a multiindex� Moreover� the number of updated indices for an update in a full

index is in proportion to n� and the cost for these updated indices is higher than the cost

for a forward traversal in a path index� Therefore� a full index has a higher average

update cost than a path index� When n is small� since the cost for a backward traversal

in a nested index is lower than the cost for the updated indices in a full index� a nested

index has a lower average update cost than a full index� On the other hand� when n � ��

a full index has a lower average update cost than a nested index�

	�

Figure 	�� The storage cost for K�� � K�
 � 	� under di�erent value of K�	�

Figure 	� shows the storage costs for a full index� a multiindex� a nested index and

a path index� where n �
� m�	 � m�� � m�
 � 	� K�� � K�
 � 	�� and K�	 is

varied from 	 to ��� Obviously� the full index can reduce the retrieval cost at the cost of

increasing the storage cost� therefore� the full index has a higher storage cost than all the

others� When n �
� there are six indices in the full index� but there are three indices

in the multiindex and there is only one index in the nested index and the path index�

Since a path index records all the instantiations ending with the object of end of the path

and some instantiations may share some references� a path index has a certain degree of

redundancy and has a higher storage cost than a multiindex� Moreover� when K�i is high

enough� the path index may need a higher storage cost than the full index� Figure 		

shows the storage costs for a full index and a path index� where n �
� m�	 � m�� �

m�
 � 	� K�� � K�
 � 	� and K�	 is varied from �� to ��� From this �gure� we can

�nd that when K�	 � ��� the path index needs a higher storage cost than the full index�

� Optimal Index Con�guration

To reduce the high update cost for a long given path� we can split the path into several

subpaths and allocates a separate index on each subpath ��� 	��� Given a path� the number

of subpaths and the index organization of each subpath de�ne an index con�guration� But

the increase of the number of indices for subpaths will also increase the retrieval cost for

scanning a number of indices� which results in a high retrieval cost� Since a low retrieval

cost and a low update cost are always a trade�o� in all index organizations� we can establish

a cost formula to look for a compromise between these two requirements� In ���� they have

��

Figure 		� The storage cost for K�� � K�
 � 	 under di�erent value of K�	�

proposed cost formulas to evaluate the costs of various index con�gurations� However�

they do not support the partial instantiations and do not consider more than one nested

predicates along the path� In this section� we will propose cost formulas to determine the

index con�guration which can provide the best performance for various applications by

taking into account various types of queries along a given path and a set of queries with

more than one nested predicates along a given path�

For example� suppose that we have a path � C�	�A�	����A�
� where path�length �

� This path can be split in several di�erent ways� All the possible split ways si �	 � i � �

are grouped as follows� where P j
i denotes the jth subpath in the ith split way� and on the

subpath P j
i � P

j
i c and P j

i a denote the starting class and the ending attribute� respectively�

Split Way Subpaths Boundary

s� � P �
� � C�	�A�	 P �

� c � 	 � P �
� a � 	

P �
� � C���A�� P �

� c � � � P �
� a � �

P �
� � C�
�A�
 P �

� c �
 � P �
� a �

s� � P �
� � C�	�A�	�A�� P �

� c � 	 � P �
� a � �

P �
� � C�
�A�
 P �

� c �
 � P �
� a �

s� � P �
� � C�	�A�	 P �

� c � 	 � P �
� a � 	

P �
� � C���A���A�
 P �

� c � � � P �
� a �

s� � P �
� � C�	�A�	�A���A�
 P �

� c � 	 � P �
� a �

�	

Let us consider the split way s�� we can allocate an index organization such as a

multiindex�MX� a nested index�NX� a path index�PX and a full index�FX� on each

subpath� For example� fFX �� P �
� � NX �� P �

� g denotes that a full index is allocated on

subpath P �
� and a nested index is allocated on subpath P �

� � respectively�

In general� given a path C�	�A�	����A�n� the set of split ways S is fs�� s�� ���� srg�

where r denotes the number of split ways of the path� and each split way si �	 � i � r is

fP �
i � ���� P

g
i g� where g denotes the number of subpaths of si� The organization sets for si is

ITSi � fIT �
i �� P �

i � ���� IT
g
i �� P

g
i g� where IT

k
i � fMX� NX� PX� FXg� 	 � i � r and

	 � k � g�

��� Access Cost

Given a path C�	�A�	����A�n� a split way st and its index organization set ITSt �	 � t

� r� the retrieval cost for a query with a path�expression C�i�A�i����A�j � �O�j � 	�

�	 � i � j � n is denoted as Cost At�i�j and is obtained as follows�

Cost At�i� j � RCt�i� P l
t c �

� RCt�P l
t c�P

l
t a

� RCt�P
l��
t c�P l��

t a � ���

� RCt�Pm
t c�Pm

t a

� RCt�Pm
t a�j�

where P l��
t c � i � P l

t c� P
m
t a � j � Pm��

t a� 	 � l � m � g and g is the number

of subpaths of st� Moreover� RCt�a� b � RCb
a� when IT

y
t � �FX�� P y

t c � a � b � P
y
t a

and 	 � y � g� that is� a full index is allocated on subpath P
y
t � If IT

y
t is �MX�� �NX� or

�PX�� RCt�a� b can be obtained as described in �
��

��� Maintenance Cost

Given a path C�	�A�	����A�n� a split way st and its index organization set ITSt �	 �

t � r� the update cost for O�i � 	 of O�i �	 � i � n is denoted as Cost Ut�i and is

obtained as follows�

Cost Ut�i � U l
t�i� P l

t c � i � P l
t a�

Moreover� U l
t �i � Ui� when IT l

t � �FX� and 	 � l � g� that is� a full index is

allocated on subpath P l
t � If IT

l
t is �MX�� �NX� or �PX�� U l

t�i can be obtained as described

in �
�� As similar to the update cost� the deletion cost Cost Dt�i and the insertion cost

Cost It�i can be easily obtained�

��

��� Cost Formulas

The total cost of an index con�guration with a split way st and its a corresponding orga�

nization set ITt for a query with a path�expression C�i�A�i����A�j � �O�j � 	� �	 � i

� j � n is denoted as

�Cost At�i� j �
nX

m��

�mCost Ut�m �
nX

m��

�mCost Dt�m �
nX

m��

�mCost It�m�

where � �
nX

m��

�m �
nX

m��

�m �
nX

m��

�m � 	�

Moreover� the total cost of an index con�guration with a split way st and its a cor�

responding organization set ITt for a set queries with path�expressions C�i��A�i�����A�j�

� �O�j� � 	�� C�i��A�i�����A�j� � �O�j� � 	�� ���� C�ik�A�ik����A�jk � �O�jk � 	� �k

� 	� 	 � q � k and 	 � iq � jq � n� is denoted as

kX
q��

�qCost At�iq� jq �
nX

m��

�mCost Ut�m �
nX

m��

�mCost Dt�m �
nX

m��

�mCost It�m�

where
kX

q��

�q �
nX

m��

�m �
nX

m��

�m �
nX

m��

�m � 	�

Therefore� given a path C�	�A�	����A�n and a set of queries with path�expressions

C�i��A�i�����A�j� � �O�j� � 	�� C�i��A�i������A�j� � �O�j� � 	�� ����C�ik�A�ik�����A�jk

� �O�jk � 	� �k � 	� 	 � q � k and 	 � iq � jq � n� the optimal index con�guration can

be obtained by trying all possible split ways combined with all possible index organization

sets and then �nding one which can provide the minimum cost�

��� Simulation Results

In this subsection� we do several simulations to �nd an optimal index con�guration for

queries along a given path against a class�aggregation hierarchy� In all these simulations�

we assume that n � �� N�	 � �������� m�y � 	� K�y � �� �	 � y � n� UIDL � �� kl

� �� ol � �� pp � �� f � �	�� d � 	�� and PS � ����� Since the cost for an insertion�or

a deletion is in proportion to the cost for an update� we only consider the retrieval and

update costs by letting the probabilities of insertion and deletion be � in the following

simulations� The retrieval probability �denoted as R is varied form 	 to �� at the same

time� the update probability �denoted as U is varied from � to 	�

Figure 	� shows the optimal index con�gurations for a query of a simply type with

a path�expression C�	�A�	�����A�� � �O���� Figure 	
 shows the optimal index con�

�gurations for queries of a ��degree complex type with the same probability to be per�

�

formed� which path�expressions are C�	�A�	�����A�� � �O��� and C�	�A�	�����A�� �

�O���� respectively� Figure 	� shows the optimal index con�gurations for queries of a ��

degree complex type with the same probability to be performed� which path�expressions are

C�	�A�	�����A�j � �O�j�� 	 � j � �� Figure 	� shows the optimal index con�gurations

for four queries in a general set with the same probability to be performed� which path�

expressions are C�	�A�	�����A�� � �O���� C���A�������A�� � �O���� C�
�A�
�����A��

� �O��� and C���A�������A�� � �O���� respectively� Figure 	� shows the optimal index

con�gurations for queries in a general set with the same probability to be performed� which

path�expressions are C�i�A�i�����A�j � �O�j�� 	 � i � j � ��

From these �gures� in general� we can �nd that a full index on the path C�	�A�	�����A��

is an optimal index con�guration when the retrieval probability is high� The reason is that

a full index can support any type of queries along a given path with a lower retrieval

cost than all the other index organization� and the update probability is so small such that

the update cost is neglectable� therefore� the path does not have to be split into several

subpaths for reducing update cost� As the retrieval probability is decreased �that is� the

update probability is increased� the update cost is not neglectable� which results in a need

of a split on the path for reducing the update cost� And for each split subpath� a full index�

a nested index or a path index is allocated according to the query status on this subpath�

Since a nested index and a path index cannot support the partial instantiations� a full

index is always a good choice to be allocated on each subpath as shown on Figures 	� and

	�� When the update proability is high� a multiindex on the path C�	�A�	�����A�� is

a good choice for the reasons of requiring the lower update cost than the others and the

neglectable retrieval cost�

� Conclusion

In this paper� we have proposed a new index organization for evaluating queries� called

full index� where an index is allocated for each class and its attribute �or nested attribute

along the path� From the analysis results� we have found that a full index can support any

type of queries along a path against a class�aggregation hierarchy with a lower retrieval cost

than all the other index organizations �a multiindex� a nested index and a path index�

Moreover� to reduce the high update cost for a long given path� we have split the path into

several subpaths and allocated a separate index on each subpath� Since a low retrieval cost

and a low update cost are always a trade�o� in all index organizations� we have established

a cost formula to look for a compromise between these two requirements� In ���� they have

��

Figure 	�� The optimal index con�gurations for a query of a simple type�

Figure 	
� The optimal index con�gurations for queries of a ��degree complex type�

��

Figure 	�� The optimal index con�gurations for queries of a ��degree complex type�

Figure 	�� The optimal index con�gurations for four queries in a general set�

��

Figure 	�� The optimal index con�guration for queries in a general set�

proposed cost formulas to evaluate the costs of various index con�gurations� However�

they do not support the partial instantiations and do not consider more than one nested

predicates along the path� In this paper� we have proposed cost formulas to determine the

best index con�guration to provide the best performance for various applications by taking

into account various types of queries along a given path and a set of queries with more

than one nested predicates along a given path� From the simulation results� in general� a

full index is an optimal index con�guration against a path when the retrieval probability

is high� How to provide an e�cient index organization for queries along more than one

paths against a class�aggregation hierarchy is the future research direction�

References

��� S� Abiteboul and R� Hull� �IFO� A Formal Semantic Database Model�� ACM Transactions

on Database Systems� Vol� �	� No�
� ���� pp� �	������

�	� R� Bayer and E� McCreight� �Organization and Maintenance of Large Ordered Indexes��
Acta Information� Vol� �� No� �� ��	� pp� �������

��� E� Bertino and W� Kim� �Indexing Techniques for Queries on Nested Objects�� IEEE Trans�

actions on Knowledge and Data Engineering� Vol� �� No� 	� ����� pp� ����	�
�

�
� E� Bertino and L� Martino� �Object�Oriented Database Management Systems� Concepts and
Issues�� Computer� Vol� 	
� No�
� ����� pp� ���
�

��

��� E� Bertino� �An Indexing Technique for Object�Oriented Databases�� in Proceedings of IEEE

International Conference on Data Engineering� ����� pp� �������

��� E� Bertino and L� Martino� �Object�Oriented Database Systems� Concepts and Architec�
tures�� Addison�Wesley Publishing Inc�� New York� �����

�� E� Bertino� �Index Con�guration in Object�Oriented Databases�� The VLDB Journal� Vol�
�� No� �� ���
� pp� ��������

��� E� Bertino and P� Foscoli� �Index Organizations for Object�Oriented Database Systems��
IEEE Transactions on Knowledge and Data Engineering� Vol� � No� 	� ����� pp� ����	���

��� R�G�G� Cattell� �Object Data Management� Object�Oriented and Extended Relational
Database systems�� Addison�Wesley Publishing Inc�� New York� ���
�

���� S� Christodoulakis� J� Vanderbroek� J� Li� T� Li� S� Wan� Y� Wang� M� Papa and E� Bertino�
�Development of a Multimedia Information System for an O�ce Environment�� in Proceed�

ings of the Tenth International Conference on Very Large Data Bases� ���
� pp� 	���	��

���� D� Comer� �The Ubiquitous B�tree�� ACM Computing Surveys� Vol� ��� No� 	� ���� pp�
�	�����

��	� H� Ishikawa� F� Suzuki� F� Kozakura� A� Makinouchi� M� Miyagishima� Y� Izumida� M�
Aoshima and Y� Yamane� �The Model� Language� and Implementation of an Object�Oriented
Multimedia Knowledge Base Management System�� ACM Transactions on Database System�
Vol� ��� No� �� ����� pp� �����

���� A� Karmouch� L� Orozco�Barbosa� N� D� Georganas and M� Goldberg� �A Multimedia Med�
ical Communications System�� IEEE Journal on Selected Areas in Communications� Vol� ��
No� �� ����� pp��	������

��
� A� Kemper and G� Moerkotte� �Access Support in Object Bases�� in Proceedings of the ACM

SIGMOD� ����� pp� ��
��
�

���� A� Kemper and G� Moerkotte� �Access Support Relations� an Indexing Method for Object
Bases�� Information Systems� Vol� �� No� 	� ���	� pp�����
��

���� W� Kim and F� Lochovsky� �Indexing Techniques for Object�Oriented Databases�� in W�
Kim and F� Lochovsky �ed��� Object�oriented concepts� databases� and applications� Addison�
Wesley Publishing Inc�� New York� �����

��� C� C� Low� B� C� Ooi� and H� Lu� �H�Trees� a Dynamic Associative Search Index for OODB��
ACM SIGMOD� ���	� pp� ��
��
��

���� D� Maier and J� Stein� �Indexing in an Object�Oriented Database�� in Proceedings of IEEE

Workshop on Object�Oriented DBMSs� ����� pp� �����	�

���� C� Meghini� F� Rabitti and C� Thanos� �Conceptual Modeling of Multimedia Documents��
IEEE Computer� Oct� ����� pp� 	�����

��

�	�� E� Oomoto and K� Tanaka� �OVID� Design and Implementation of a Video�Object Database
System�� IEEE Transactions on Knowledge and Data Engineering� Vol� �� No�
� ����� pp�
�	���
��

�	�� P� Valduriez� �Join Indices�� ACM Transactions on Database Systems� Vol� �	� No� 	� ����
pp� 	���	
��

�		� D� Woelk� W� Kim and W� Luther� �An Object�Oriented Approach to Multimedia
Databases�� in Proceedings of ACM SIGMOD� ����� pp� �����	��

�	�� D� Woelk� �Multimedia Information Management in an Object�Oriented Database System��
in Proceedings of the ��th VLDB Conference� ���� pp� �����	��

�	
� A� Yoshitaka� S� Kishida� M� Hirakawa and T� Ichikawa� �Knowledge�Assisted Content�Based
Retrieval for Multimedia Databases�� IEEE Multimedia� Winter ���
� pp� �	�	��

�	�� Z� Xie and J� Han� �Join Index Hierarchies for Supporting E�cient Navigations in Object�
Oriented Databases�� in Proceedings of the ��th VLDB Conference� ���
� pp� �		�����

��

